
\qquad
\qquad

Scalar \& Vector	
Scalar	Vector
- A quantity that has magnitude (how big or how much) but does not take into	- A quantity that has both magnitude and direction - velocity
account direction	- $30 \mathrm{~m} / \mathrm{s}$, North
$\begin{aligned} & \text { - mass } \\ & \cdot 70 \mathrm{~kg} \end{aligned}$	- Note: we place an arrow above the symbol for the quantity to indicate it is a vector (d).

Position

\qquad

- Where an object is. \qquad
- A car driving from home to school has an initial position and a final position. \qquad

Distance \& Displacement

Distance

- The length of the path between its initial position and its fina position.
- Depends on path taken
- Symbol: d

Displacement

- The net change in position of an object.
- Includes the direction
- Symbol: \vec{d}
,
Distance i/
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

\qquad

- A boy walks 4 m East, 2 m South, 4 m \qquad West and finally 2 m , North.

Speed \& Velocity

Speed

- The rate at which an object changes its location.
- The average speed is the total distance traveled divided by time

$$
v_{a v}=\frac{\text { distance }}{\text { time }}=\frac{d}{t} \quad \vec{v}_{a v}=\frac{\text { displacement }}{\text { time }}=\frac{\Delta \vec{d}}{\Delta t}
$$

Velocity

- The speed and direction of an object. - Includes direction
- The average velocity is the displacement divided by time
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Instantaneous speed or velocity
- As an object travels from position A to position B, the speed or velocity will not necessarily remain the same.
- Average speed or velocity does not take into account what happens between positions A and B.
- The speed or velocity at a specific point in time is the instantaneous speed or velocity.
- The speedometer on a car, for example, measures the instantaneous speed of the car.

Example

- A turtle leaves his house and moves 30 m North followed by 10 m South. The trip takes 20 s to complete. Calculate the average speed and velocity of the turtle.

$$
\begin{array}{rlrl}
\text { Average Speed } & \text { Average Velocity } \\
\begin{aligned}
v_{\text {avg }}=\frac{d}{t} & =\frac{30+10 \mathrm{~m}}{20 \mathrm{~s}} & \vec{v}_{\text {avg }}= & \frac{\Delta \vec{d}}{\Delta t}
\end{aligned}=\frac{30-10 \mathrm{~m}}{20 \mathrm{~s}} \\
& =2 \mathrm{~m} / \mathrm{s} & & =1 \mathrm{~m} / \mathrm{s}, \text { North }
\end{array}
$$

Acceleration

- The change in velocity divided by a period of time during which the change occurs.
- Acceleration is a vector (includes direction)

$$
\vec{a}_{a v}=\frac{\Delta \vec{v}}{\Delta t}
$$

- Since velocity is speed plus direction, the velocity will change if the speed changes or the direction changes.
- Therefore, an object will accelerate if its speed changes or its direction changes.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- The direction of the acceleration depends on
- what direction the object is moving
- how the speed is changing
- The general principle for determining the \qquad direction of acceleration is
- If an object is slowing down, then its acceleration is in the opposite direction of its motion
(a) Car is speeding up
(a)

(b)

(b) Car is slowing down
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Texas Education Agency (TEA). Physics, OpenStax (Creative Commons Attribution License 4.0)

Examples

- Which direction is the acceleration? \qquad
- A car is speeding up while traveling North - North \qquad
- A truck going forwards is slowing down - Backwards \qquad
- A car is slowing down while traveling East - West
- A truck is speed up while going backwards
- backwards

Uniform Motion

- The object is moving with a constant \qquad velocity

Summary

\qquad

- Distance d
- Displacement \vec{d}
- Average speed $v_{a v}=\frac{\text { distance }}{\text { time }}$
- Average velocity $\vec{v}_{a v}=\frac{\Delta \vec{a}}{\Delta t}$
- Average acceleration $\vec{a}_{a v}=\frac{\Delta \vec{v}}{\Delta t}$

Unit Conversions

$$
\frac{k m}{h} \times \frac{1000}{3600}=\frac{m}{s}
$$

Example:

$$
50 \frac{\mathrm{~km}}{\mathrm{~h}} \times \frac{1000}{3600}=13.9 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Example

\qquad

- A car starting from rest reaches a velocity \qquad of $100 \mathrm{~km} / \mathrm{h}$ North in 5 s . What is the acceleration of the car?
- First convert km/h to m/s

$$
\begin{gathered}
100 \frac{\mathrm{~km}}{\mathrm{~h}} \times\left(\frac{1000}{3600}\right)=27.78 \mathrm{~m} / \mathrm{s} \\
\vec{a}_{a v}=\frac{\vec{v}_{2}-\vec{v}_{1}}{\Delta t}=\frac{(27.78-0)}{5}=5.6 \mathrm{~m} / \mathrm{s} \text { North }
\end{gathered}
$$

Graphing

- If an object is moving at a constant velocity, then its position will be constantly increasing.
- A graph of its position vs time would look like this

- Describe the motion as shown in the following position-time graph.

\qquad
- We can also use the graph to calculate the average velocity from 20 to 35 s.

- The slope of a position-time is average \qquad velocity

$$
\begin{aligned}
\vec{v}_{a v}=\text { slope } & =\frac{\text { rise }}{\text { run }} \\
& =\frac{20-8}{35-20} \\
& =\frac{12}{15} \\
\vec{v}_{a v} & =0.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

- If an object travels with a constant velocity, then a graph of velocity vs time would be a flat line.

- If the object speeds up at a constant rate, then a graph of the velocity vs time would look like this

- Describe the motion as shown by the following velocity-time graph.

- A velocity-time graph can be used to calculate both displacement and acceleration.
- The area under the curve is the displacement.
- The slope is the acceleration
- Calculate the displacement and average acceleration from 10-20 s.

- Displacement

$\Delta \vec{d}=$ area $=\frac{\text { base } \times \text { height }}{2}=\frac{(20-10)(15-0)}{2}$
$\Delta \vec{d}=75 \mathrm{~m}$

- Acceleration
$\vec{a}=$ slope $=\frac{\text { rise }}{\text { run }}=\frac{0-15}{20-10}$
$\vec{a}=-1.5 \mathrm{~m} / \mathrm{s}^{2}$
- When an object is accelerating, the position-time graph is curved.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

